Abstract

The synthesis and biophysical evaluation of R and S-5'-Me-α-l-LNA nucleoside phosphoramidites and modified oligo-2'-deoxyribonucleotides is reported. Synthesis of the nucleoside phosphoramidites was accomplished in multi-gram quantities starting from diacetone glucose. The 5'-methyl group in the S configuration was introduced by reacting the sugar 5'-aldehyde with MeMgBr. Synthesis of the R-5'-Me isomer was accomplished from the S-5'-Me nucleoside by a late stage inversion using Mitsunobu conditions. Evaluation of the modified oligonucleotides in thermal denaturation experiments revealed that R-5'-Me-α-l-LNA showed similar RNA affinity as α-l-LNA while the S-5'-Me analog was less stabilizing. This result is in contrast to the β-d-series where the S-5'-Me isomer showed LNA-like affinity for RNA while the R-5'-Me group completely reversed the stabilization effect on duplex thermostability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.