Abstract

Human RNase H1 cleaves RNA exclusively in an RNA/DNA duplex; neither double-strand DNA nor double-strand RNA is a viable substrate. Previous studies suggest that the helical geometry and sugar conformation of the DNA and RNA may play a role in the selective recognition of the heteroduplex substrate by the enzyme. We systematically evaluated the influence of sugar conformation, minor groove bulk, and conformational flexibility of the heteroduplex on enzyme efficiency. Modified nucleotides were introduced into the oligodeoxyribonucleotide at the catalytic site of the heteroduplex and consisted of southern, northern, and eastern biased sugars with and without 2'-substituents, non-hydrogen bonding base modifications, abasic deoxyribonucleotides, intranucleotide hydrocarbon linkers, and a ganciclovir-modified deoxyribonucleotide. Heteroduplexes containing modifications exhibiting strong northern or southern conformational biases with and without a bulky 2'-substituent were cleaved at a significantly slower rate than the unmodified substrate. Modifications imparting the greatest degree of conformational flexibility were the poorest substrates, resulting in dramatically slower cleavage rates for the ribonucleotide opposing the modification and the surrounding ribonucleotides. Finally, modified heteroduplexes containing modifications predicted to mimic the sugar pucker and conformational flexibility of the deoxyribonucleotide exhibited cleavage rates comparable with those of the unmodified substrate. These data suggest that sugar conformation, minor groove width, and the relative positions of the intra- and internucleotide phosphates are the crucial determinants in the selective recognition of the heteroduplex substrate by human RNase H1 and offer immediate steps to improve the performance of DNA-like antisense oligonucleotides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.