Abstract

Abstract The mechanisms of signal peptide cleavage has not been fully elucidated yet. In previous investigation, we have examined the effect of chicken lysozyme signal peptide mutations on the secretion of human lysozyme. During this study, we determined that the hydrophobic bulky amino acid Val at position ‐1 inhibited the function of signal peptide. To determine why the ‐1Val suppressed the function of signal peptide, turn‐promoting amino acids Pro and Gly were introduced after ‐lVal to prevent the signal peptide from forming α‐helix and induce β‐turn around the cleavage site. This mutation resulted in no processing of signal peptide and no secretion of human lysozyme. However, the replacement of ‐1Val with Ala permitted a functional signal. Based on these results, three dimensional models around the cleavage site of each signal peptide were made, which show that bulky side chain at ‐1 residue of signal peptide limits the reaction space for signal peptidase and suppresses cleavage by steric hindrance. We suggest that the bulky side chain at ‐1 residue suppresses the signal peptide cleavage by its local steric hindrance and not by a change in whole structure around the cleavage site. On the other hand, introduction of Pro at position +1 did not inhibit signal cleavage completely resulting in poor secretion and processing efficiency although Pro in position +1 has been recently reported to block cleavage of the prokaryotic signal peptide. The mechanism of cleavage of prokaryotic signal may be different than that of eukaryotic signal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.