Abstract
Accurate computation of failure probability considering uncertain input parameters is very challenging within limited computational cost. An efficient surrogate model, referred to here as sparse variational Bayesian inference based polynomial chaos expansion (SVB-PCE), is formulated in this paper for reliability analysis. The sparsity in the polynomial basis terms is introduced by the automatic relevance determination (ARD) algorithm and the coefficients corresponding to the sparse polynomial bases are computed using the VB framework. The reliability analysis is performed on four typical numerical problems using the SVB-PCE model. The failure probability and the reliability index for all the examples are assessed accurately by the SVB-PCE model using fewer number of model evaluations as compared to the state-of-art methods. Further, the ARD enables to capture the most important terms in the polynomial bases which also reduces the computational cost in assessing the failure probability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.