Abstract

AbstractHydrogels hold immense promise in biomedical applications due to their biocompatibility, high water content, and versatile fabrication. This study focuses on the mechanical behavior of a novel polysaccharide/protein hybrid hydrogel, GEL‐AXG, synthesized via a Schiff base reaction between aldehyde‐modified xanthan gum (AXG) and gelatin (Gel). Hydrogel samples with varying AXG‐to‐Gel ratios were subjected to unconfined compression tests to assess their mechanical properties. The observed stress‐relaxation mechanism in deformed hydrogels primarily involves water migration. To quantify these mechanical properties, we applied the linear poroelasticity theory. Our results highlight that Gel‐AXG hydrogels with a 2:1 AXG‐to‐Gel ratio exhibit significantly higher peak and equilibrium stresses. This enhancement can be attributed to increased crosslink density and reduced dangling chain presence. Moreover, the linear poroelasticity formulation yielded a shear modulus of G = 44.91 ± 0.25 kPa for Gel‐AXG hydrogels with a 1:2 AXG‐to‐Gel volume ratio, which we identified as our optimized hydrogel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.