Abstract

The metallic glass Pd40Cu30Ni10P20 in as-cast or pre-annealed states was shot-peened successively at room temperature or at 77 K. The structural state of the glass was characterized by the relaxation spectrum measured in a differential scanning calorimeter. Mechanically induced relaxation of the as-cast glass and mechanically induced rejuvenation of pre-annealed samples are both more evident at 77 K than at 298 K, enabling deductions about the underlying mechanisms. The relaxation spectrum of the glass as a function of temperature displays two broad maxima, which occurring at the higher temperature is attributed to the part of the free-volume distribution associated with flow defects. In samples shot-peened at 77 K, the stored energy after deformation can be as high as 20% of the cold work. Shot-peening simultaneously generates flow defects within shear bands and destroys them in the matrix between bands: whose effect dominates is principally dependent on the initial state of relaxation of the glass. Shot-peening of partially crystallized samples appears capable of breaking up and dispersing crystallites without inducing any further significant crystallization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.