Abstract

We present a mechanism-based model of fracture propagation in a two-dimensional elastic sheet subjected to biaxial stretching. The time evolution of lattice stretching is formulated using a set of coupled nonlinear differential equations describing the network dynamics of masses connected by springs. We show that reinforcement based on a Gaussian spatial distribution of failure thresholds is effective in hindering tear propagation, that is, it delays the onset of breakage and reduces the total fractured sites at equilibrium time. The method presented here is general—it can incorporate any type of load distribution and test any reinforcement procedures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.