Abstract

AbstractSingle atom catalysts (SACs) that integrate the merits of homogeneous and heterogeneous catalysts have been attracting considerable attention in recent years. The individual metal atoms of SACs can be stabilized on supports through various unsaturated chemical sites or space confinement for achieving the maximized atom utilization efficiency. Aside from the development of strategies for preparing high loading and high purity SACs, another key challenge in this field is precisely manipulating the geometric and electronic structure of catalytically active single metal sites, thus rendering the catalysts exceptionally reactive, selective, and stabile compared to their bulk counterparts. This review summarizes recent advancements in SACs for heterogeneous catalysis from the perspective of local structural regulation and the synergistic coupling effect between metal species and supports. Special emphasis is placed on the elucidation of the catalytic structure‐performance relationship in terms of coordination environment, valence state and metal‐support interactions by advanced characterization and theoretical studies. Select in situ or operando characterization techniques for tracking the SACs’ structure evolution under realistic conditions are highlighted. Finally, the challenges and opportunities are discussed to offer insight into the rational design of more intriguing SACs with high activity and distinct chemoselectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.