Abstract

Denominator functions for the set of self-conjugate SU(3) tensor operators are explicitly obtained and shown to be uniquely related to SU(3) -invariant structural properties. This relationship becomes manifest through the appearance of zeroes of the denominator functions which thereby express the fundamental null space properties of SU(3) tensor operators. It is demonstrated that there exist characteristic denominator functions whose zeroes, in position and multiplicity, possess the interesting, and unexpected, property of forming SU(3) weight space patterns (in which the zeroes play the role of weights).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.