Abstract
The structural properties of microcrystalline Si films prepared by hot-wire/catalytic chemical vapor deposition, with various dilution ratios of silane in hydrogen, were investigated as regards to the role of hydrogen. A large surface roughness correlated with a low crystalline nuclei density was observed for microcrystalline Si films deposited near the transition from amorphous to microcrystalline growth. Investigations of hydrogen-related properties suggest the presence of molecular hydrogen in these films. We tentatively propose that the diffusion of atomic hydrogen into the subsurface layer of growing films, which leads to the relaxation of amorphous Si network and to the generation of molecular hydrogen, plays an important role for determining the film properties, besides top surface reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.