Abstract

Major Histocompatibility class II (MHC-II) molecules sample peptides from the extracellular space allowing the immune system to detect the presence of foreign microbes from this compartment. Prediction of MHC class II ligands is complicated by the open binding cleft of the MHC class II molecule, allowing binding of peptides extending out of the binding groove. Furthermore, only a few HLA-DR alleles have been characterized with a sufficient number of peptides (100–200 peptides per allele) to derive accurate description of their binding motif. Little work has been performed characterizing structural properties of MHC class II ligands. Here, we perform one such large-scale analysis. A large set of SYFPEITHI MHC class II ligands covering more than 20 different HLA-DR molecules was analyzed in terms of their secondary structure and surface exposure characteristics in the context of the native structure of the corresponding source protein. We demonstrated that MHC class II ligands are significantly more exposed and have significantly more coil content than other peptides in the same protein with similar predicted binding affinity. We next exploited this observation to derive an improved prediction method for MHC class II ligands by integrating prediction of MHC- peptide binding with prediction of surface exposure and protein secondary structure. This combined prediction method was shown to significantly outperform the state-of-the-art MHC class II peptide binding prediction method when used to identify MHC class II ligands. We also tried to integrate N- and O-glycosylation in our prediction methods but this additional information was found not to improve prediction performance. In summary, these findings strongly suggest that local structural properties influence antigen processing and/or the accessibility of peptides to the MHC class II molecule.

Highlights

  • Major histocompatibility complex (MHC) class II molecules orchestra essential parts of the immune system defining the onset of for instance cytotoxic T cell induced apoptosis and B cell proliferation

  • Performing a pairwise comparison of local structural properties between these 459 ligands and their non-ligand affinity matched counter-part revealed that MHC class II ligands were significantly more exposed and had significantly less secondary structure element (a-helix and b-strand) compared to the non-ligands

  • Characterizing and identifying peptides that bind MHC class II molecules and elicit an immunogenic response is critical for the understanding of host-pathogen immune system interactions and in the selection of candidate peptides in vaccine research

Read more

Summary

Introduction

Major histocompatibility complex (MHC) class II molecules orchestra essential parts of the immune system defining the onset of for instance cytotoxic T cell induced apoptosis and B cell proliferation. Identification of which peptides will bind a given MHC class II molecule is of pivotal interest for the understanding of a host immune response to any given pathogen. To guide this identification, several prediction methods have been developed over the last decade (see [1] and references ). The open binding cleft for MHC class II molecules allows peptides to extend the nonamer binding core. This makes prediction of peptide binding more challenging for MHC class II compared to MHC class I due to the need to simultaneous predict the binding register and binding motif

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.