Abstract

The purpose of this study was to measure the structural properties of the latest design (fourth-generation) of composite femurs and tibias from Pacific Research Laboratories, Inc. Fourth-generation composite bones have the same geometries as the third-generation bones, but the cortical bone analogue material was changed to one with increased fracture and fatigue resistance, tensile and compressive properties, thermal stability, and moisture resistance. The stiffnesses of the femurs and tibias were tested under bending, axial, and torsional loading, and the longitudinal strain distribution along the proximal–medial diaphysis of the femur was also determined. The fourth-generation composite bones had average stiffnesses and strains that were for the most part closer to corresponding values measured for natural bones, than was the case for third-generation composite bones; all measurements were taken by the same investigator in separate studies using identical methodology. For the stiffness tests, variability between the specimens was less than 10% for all cases, and setup variability was less than 6%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.