Abstract

The structural properties of nanocrystalline europium oxide (Eu2O3) thin films, produced via electrophoretic deposition (EPD), were investigated. We found that EPD from our Eu2O3 nanocrystal solutions yielded both translucent films, with uniform size and distribution of the microstructure, and opaque films, with marked anisotropy to the size and distribution of the constituents of the microstructure. The disparity in the film morphology arose from the initial temperature conditions of the nanocrystal solution. The translucent films, produced from pre-chilled (−25 °C) EPD solutions, were bimodal films, comprised of homogeneous, tightly packed, glassy nanocrystalline films interspersed with micron-sized nanocrystal aggregates. In contrast, the opaque films, produced from room temperature solutions, consisted of an irregularly distributed and shaped microstructure. The evolution of the microstructure was monitored for the chilled samples as a function of film thickness (deposition time) and juxtaposed with the resultant structure of the room temperature film. Optical microscopy and scanning electron microscopy were employed to characterize the films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.