Abstract

ABSTRACTModified yam starch and dual-modified yam starch were produced with propylene oxide, sodium trimetaphosphate and sodium tripolyphosphate. Gelatinization temperature and final viscosity of native yam starch were 79.2 ± 0.4°C and 5702 ± 3 cP. Results showed that the molar substitution and degree of substitution were increased with the volume fraction of propylene oxide from 6–12%, the highest of molar substitution and degree of substitution were 0.0445 ± 0.0003 and 0.0065 ± 0.0006, the final viscosity and setback of dual-modified yam starch were also similar. However, the gelatinization parameters showed an inverse trend. Starch modified with a mixture of sodium trimetaphosphate and sodium tripolyphosphate had higher phosphorus content and increased viscosity compared to starch modified with sodium trimetaphosphate. The peak viscosity of starch modified with propylene oxide was higher than that of native yam starch and the highest was HP12. The granular surface of modified yam starch and dual-modified yam starch appeared significantly embossed and indented, while. Modified yam starch film treated with 12% propylene oxide showed a more homogeneous fractured surface. The tensile strength and elongation at break (E) of starch films were affected by crosslinking reagents and propylene oxide, respectively. The best transparence and E were demonstrated in starch film that was modified with 12% propylene oxide. However, the best tensile strength was demonstrated in starch film that was modified with 8% propylene oxide, sodium trimetaphosphate, and sodium tripolyphosphate. The final viscosity of HP6C1 and HP6C2 was 27 ± 7 and 45 ± 9 cP, which was too low to form film.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.