Abstract

This paper focuses on the dependence of the rheological properties of PLA-PEG and PLGA dispersions and films on the polymer structural properties, in order to obtain useful information to predict and explain the performance of polyester films as drug-delivery systems. In this study, one PLA-PEG and three PLGA polymers of different molecular mass were synthesized and characterized by NMR, GPC, DSC and TGA–FT-IR. To characterize the viscoelastic behaviour of concentrated solutions in dichloromethane and of the films obtained by a solvent-casting technique, oscillatory shear rheometry was used. The polymer dispersions showed a characteristic Newtonian viscous behaviour, but with different consistency index depending on the nature of the polymer. Freshly prepared, PLGA and PLA-PEG films had elastic modulus (G′) greater than viscous modulus (G″). The decrease in both moduli caused by an increase in temperature from 25 to 37°C was especially marked for the polymers with T g below or around 25°C (PLGA 27 kDa and PLA-PEG 27 kDa). After being immersed in pH 7.4 aqueous solution for one week, PLGA films showed a significant increase in both G′ and G″, due to the promotion of polymer–polymer interactions in a non-solvent medium. In contrast, the PLA-PEG film became softer and more hydrated, due to the amphiphilic character of the polymer. The water taken up by the film acted as a plasticizer and induced the softening of the system. These results suggest that the presence of PEG chains exerts a strong influence on the mechanical properties of polyesters films and, possibly, the performance as coating or matrices of drug-delivery systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call