Abstract

Azobenzene self-assembled monolayers (SAMs) are examples of optomechanical nanostructures capable of producing mechanical work through the well-known azobenzene photoisomerization process. Experimental studies have provided information on their structural properties, but an atomistic description of the SAMs in both the cis and trans forms is still lacking. In this work, a computational investigation of the SAM structures is conducted by classical molecular dynamics with a dedicated force. Experimental data on the SAM unit cell is used to set up SAM models of different molecular densities. The optimal structures are identified through the comparison with structural data from X-ray photoelectron and near-edge X-ray absorption fine structure spectroscopies. The resulting SAM atomistic models are validated by comparing simulated and experimental scanning tunneling microscopy images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.