Abstract

Artificial fragmentation of the matter density field causes the formation of spurious groups of particles in N-body simulations of non-standard Dark Matter (DM) models which are characterized by a small scale cut-off in the linear matter power spectrum. These spurious halos alter the prediction of the mass function in a range of masses where differences among DM models are most relevant to observational tests. Using a suite of high resolution simulations we show that the contamination of artificial groups of particles significantly affect the statistics of halo spin, shape and virial state parameters. We find that spurious halos have systematically larger spin values, are highly elliptical or prolate and significantly deviate from virial equilibrium. These characteristics allow us to detect the presence of spurious halos even in non-standard DM models for which the low-mass end of the mass function remains well behaved. We show that selecting halos near the virial equilibrium provides a simple and effective method to remove the bulk of spurious halos from numerical halo catalogs and consistently recover the halo mass function at low masses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.