Abstract

Trace metal concentrations in soils and sediments are often controlled by adsorption to iron oxides such as goethite in both natural and contaminated systems. Because of goethite's importance as an adsorbent, its interaction with aqueous solutions has been studied extensively. Nonetheless, despite the use of numerous analytical and computational tools, the properties of goethite-aqueous solution interfaces are not fully understood. In this research, we investigate the interaction of water and aqueous NaCl, MgCl2, and BaCl2 solutions ranging in concentration from 0.1 to 4 M, with two goethite surfaces, (100) and (101), using classical molecular dynamics simulation. In the past, the (100) surface has been studied the most because of its simplicity; however, goethite crystals in the environment exhibit other prominent surfaces like the (101) surface which may exhibit very different adsorption properties than the (100) surface. The (100) surface has three surface sites; one is an under-coordinated Fe3+ which interacts strongly with water affecting the interfacial water structure, another site remains deprotonated and forms a hydrogen bond to the only hydroxylated surface site. The (101) surface is terminated with five hydroxyl groups that do not interact as strongly with water as the under-coordinated Fe3+ ion and that form a more corrugated surface structure. As a result, the (101) goethite-solution interface exhibits less water structure, weaker electric double layer oscillations, and more inner-sphere ion adsorption, especially for Cl- and Ba2+ ions. The fundamental differences in interfacial properties for these surfaces suggest that the adsorption properties of one goethite surface cannot be averaged to represent goethite interfaces present in soils and sediments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.