Abstract
AbstractIn standard stochastic dynamic programming, the transition probability distributions of the underlying Markov Chains are assumed to be known with certainty. We focus on the case where the transition probabilities or other input data are uncertain. Robust dynamic programming addresses this problem by defining a min‐max game between Nature and the controller. Considering examples from inventory and queueing control, we examine the structure of the optimal policy in such robust dynamic programs when event probabilities are uncertain. We identify the cases where certain monotonicity results still hold and the form of the optimal policy is determined by a threshold. We also investigate the marginal value of time and the case of uncertain rewards.© 2017 Wiley Periodicals, Inc. Naval Research Logistics 65: 699–716, 2018
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.