Abstract
Spike trimer plays a key role in SARS‐CoV‐2 infection and vaccine development. It consists of a globular head and a flexible stalk domain that anchors the protein into the viral membrane. While the head domain has been extensively studied, the properties of the adjoining stalk are poorly understood. Here, we characterize the coiled‐coil formation and thermodynamic stability of the stalk domain and its segments. We find that the N‐terminal segment of the stalk does not form coiled‐coils and remains disordered in solution. The C‐terminal stalk segment forms a trimeric coiled‐coil in solution, which becomes significantly stabilized in the context of the full‐length stalk. Its crystal structure reveals a novel antiparallel tetramer coiled‐coil with an unusual combination of a‐d and e‐a‐d hydrophobic core packing. Structural analysis shows that a subset of hydrophobic residues stabilizes different coiled‐coil structures: trimer, tetramer, and heterohexamer, underscoring a highly polymorphic nature of the SARS‐CoV‐2 stalk sequence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: FASEB journal : official publication of the Federation of American Societies for Experimental Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.