Abstract

This report investigated the structural, optical and electrical properties of V-doped SnO2 thin films deposited using spray pyrolysis technique. The SnO2:V films, with different V-content, were deposited on glass substrates at a substrate temperature of 550°C using an aqueous ethanol solution consisting of tin and vanadium chloride. X-ray diffraction studies showed that the SnO2:V films were polycrystalline only with tin oxide phases and the preferred orientations are along (1 1 0), (1 0 1), (2 1 1) and (3 0 1) planes. Using Scherrer formula, the grain sizes were estimated to be within the range of 25–36 nm. The variation in sheet resistance and optical direct band gap are functions of vanadium doping concentration. Field emission scanning electron microscopy (FESEM) revealed the surface morphology to be very smooth, yet grainy in nature. Optical transmittance spectra of the films showed high transparency of about ∼69–90% in the visible region, decreasing with increase in V-doping. The direct band gap for undoped SnO2 films was found to be 3.53 eV, while for higher V-doped films it shifted toward lower energies in the range of 3.27–3.53 eV and then increased again to 3.5 eV. The Hall effect and Seebeck studies revealed that the films exhibit n-type conductivity. The thermal activation energy, Seebeck coefficient and maximum of photosensitivity in the films were found to be in the range of 0.02–0.82 eV (in the low-temperature range), 0.15–0.18 mV K−1 (at T = 350 K) and 0.96–2.84, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call