Abstract
Pressure‐induced phase transitions of MIAgIIF3 perovskites (M=K, Rb, Cs) have been predicted theoretically for the first time for pressures up to 100 GPa. The sequence of phase transitions for M=K and Rb consists of a transition from orthorhombic to monoclinic and back to orthorhombic, associated with progressive bending of infinite chains of corner‐sharing [AgF6]4− octahedra and their mutual approach through secondary Ag⋅⋅⋅F contacts. In stark contrast, only a single phase transition (tetragonal→triclinic) is predicted for CsAgF3; this is associated with substantial deformation of the Jahn–Teller‐distorted first coordination sphere of AgII and association of the infinite [AgF6]4− chains into a polymeric sublattice. The phase transitions markedly decrease the coupling strength of intra‐chain antiferromagnetic superexchange in MAgF3 hosts lattices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.