Abstract

The present paper addresses the pressure-induced structural aspects of ZnS-type (B3) to NaCl-type (B1) structure in AlY (Y=N, P, As). An effective-interionic interaction potential (EIoIP) with long-range Coulomb and three-body interactions and the Hafemeister-and-Flygare-type short-range overlap repulsion extended up to the second-neighbour ions and the van der Waals (vdW) interaction is developed. Emphasis has been given on evaluating the vdW coefficients by the Slater–Kirkwood variational method, as both the ions are polarizable. The lattice model calculations have revealed reasonably good agreement with the available experimental data on the phase-transition pressures ( P t =16, 14, 7.5 GPa) and the elastic properties of AlY (Y=N, P, As). The equation of state curves (plotted between V( P)/ V(0) and pressure) for both the B3 and B1 structures obtained are in fairly good agreement with the experimental results. The calculated values of the volume collapses [Δ V( P)/ V(0)] are also close to their observed data. Further, the variations of the second-order elastic constants with pressure follow a systematic trend that is almost identical to that exhibited by the observed data measured for other semiconducting compounds with B3→B1 structural phase transitions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.