Abstract

A structural phase transition study of Ba2YCu3O6+x (x = 0 to 1) has been conducted on a series of 13 quenched samples. These samples were prepared from an orthorhombic material by annealing at temperatures from 400 to 1000 °C in air, followed by rapid quenching. All quenchings were performed by using a liquid-nitrogen-cooled copper cold well with a continuous flow of cooled helium gas. Various measurements including x-ray diffraction, thermogravimetric analysis, Meissner effect, and scanning electron microscopy were carried out in order to correlate the nature of the phase transition with erystallographic data, superconductivity, and annealing temperature. The phase transition from Ba2YCu3,O7 to Ba2YCu3O6 appears to involve two orthorhombic regions: region A with a <b ≈ c/3 below approximately 600 °C and region B with cell parameters of a < b < c/3 from & 600 to 708–720 °C. The transformation from orthorhombic to tetragonal takes place in the temperature range of 708–720 °C. This transition appears to be a second-order, order-disorder type.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.