Abstract

Beryllium telluride (BeTe) with cubic zinc-blende (ZB) structure was studied using ab initio constant pressure method under high pressure. The ab initio molecular dynamics (MD) approach for constant pressure was studied and it was found that the first order phase transition occurs from the ZB structure to the nickel arsenide (NiAs) structure. It has been shown that the MD simulation predicts the transition pressure P T more than the value obtained by the static enthalpy and experimental data. The structural pathway reveals MD simulation such as cubic→tetragonal→orthorhombic→monoclinic→orthorhombic→hexagonal, leading the ZB to NiAs phase. The phase transformation is accompanied by a 10% volume drop and at 80GPa is likely to be around 35GPa in the experiment. In the present study, our obtained values can be compared with the experimental and theoretical results. Graphical abstract The energy-volume relation and ZB phase for the BeTe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.