Abstract

Crystal structures and magnetic properties were determined for two novel compounds, [1-(4'-iodobenzyl)pyridinium][M(mnt)2] (mnt2- = maleonitriledithiolate; M = Ni (1) or Cu (2)). At room temperature, single crystals of 1 and 2 were isostructural, featuring the formation of segregated columnar structures with regular stacks of cations and anions. For crystal 1, a magnetic transition was observed at approximately 120 K; furthermore, its magnetic behavior was consistent with that of a regular Heisenberg antiferromagnetic (AFM) chain of S = 1/2 in the high-temperature phase (HT phase) and that of a spin-gap system in the low-temperature phase (LT phase). Such a phenomenon is similar to the spin-Peierls transition. However, the crystal structure of 1 in the LT phase at 100 K revealed that its structural transition is associated with the magnetic transition. Because crystal 2 (S = 0) did not exhibit a structural transition, the structural transition of 1 is driven by spin-lattice interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.