Abstract

The features of phase transformations of 12 % chromium ferritic-martensitic steel EP-823 under heating and cooling conditions in the temperature range from 30 to 1100 ℃ were studied by the methods of high-temperature X-ray diffraction analysis (XRD) in situ and differential scanning calorimetry (DSC). According to XRD in situ data, upon heating, the temperatures of the beginning and end of the (α → γ) transformation of ferrite (martensite – austenite) are Ac1 ≈ 880 °C, Ac3 ≈ 1000 °C, respectively. Upon cooling, a diffusion (γ → α) transformation occurs with critical points – Аr1 ≈ 860°С (beginning temperature) and Аr3 ≈ 840 °С (end temperature). According to DSC data, during heating, the critical points of the (α → γ) transformation are Ac1 ≈ 840 °C and Ac3 ≈ 900 °C. During cooling, a martensitic (γ → α) transformation is realized with critical points of the beginning of Ms = 344 ℃ and the end of Mf = 212 ℃ of this transformation. The XRD in situ analysis revealed no precipitation of carbide phases under heating and cooling conditions of steel EP-823. Position of the critical points of phase transformations depends on the research method (XRD in situ or DSC), which is determined by the difference in effective (taking into account the time for shooting in the XRD method) heating-cooling rate. The effect of elemental composition on the position of critical points of phase transformations and the formation of structural-phase states of ferritic-martensitic steels is discussed. It is shown that the increased content of ferrite-stabilizing elements (Cr, Mo, Nb) in composition of EP-823 steel, compared with other steels of the same class, expands the region of existence of the ferrite phase, which can contribute to an increase in the temperature of Ac1 .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call