Abstract
The structural performance of concrete walls reinforced with pultruded glass fibre-reinforced polymer (GFRP) ribbed plates on either side has been experimentally investigated. The GFRP plates were used as a stay-in-place (SIP) structural formwork replacing internal steel reinforcement. The pultruded flat plates incorporated 51 mm deep T-shape ribs on one side, spaced at 100 mm, which provided interlocking with concrete. Six 3000 × 616 mm panels, either 150 or 200 mm thick, were tested in bending ( M), under axial compression ( N) and under combined loads to establish the completed ( M- N) failure envelope of the wall. The effect of surface treatment of the GFRP forms was also investigated. It resulted in full composite action with no concrete slip, reaching 30% higher flexural strength than untreated panels. The effect of reinforcement ratio was studied by varying wall thickness. In all panel tests, diagonal concrete shear cracking occurred and propagated into a horizontal delamination above the GFRP ribs. Slenderness effect and secondary moments were accounted for in developing the ( M- N) interaction curve. Initially, M increased by 25% as N increased from zero to 17% of pure axial strength. Then, M reduced linearly to zero at pure N as concrete crushing occurred when the GFRP compression plate separated from the ribs and buckled outwards at midspan. A simplified design approach is also presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.