Abstract
The primary purpose of this paper is to present the structural behavior of precast foamed concrete sandwich walls (FCS) strengthened with double steel shear connectors (DSC) subjected to axial load. The discussion of results addresses the effect of slenderness ratio (H/t) on the behavior of the walls. It also addresses the significant effects of using double shear connectors on these behaviors compared to single steel shear connector (SSC). The FCS wall was modeled using ABAQUS and validated by the results from experiment and previous research. Parametric finite element study (FEA) was conducted by simulating these walls with various H/t under axial load. The structural behavior recorded from FEA includes its ultimate load, failure mode, load-deflection profiles, strain distribution across the wall’s thickness, and ultimate shear load. It was found that as H/t increased, the ultimate load decreased but the maximum horizontal deflection increased. FCS with H/t ⩽25 failed from crushes and cracks within the top and bottom area while FCS with H/t ⩾25 failed from buckling at its mid-height. It was also noticed that FCS with lower H/t experienced more uniform strain distribution across its thickness. FCS with DSC was able to sustain higher load but it deflected less compared to walls with SSC, caused by higher stiffness due to larger steel areas. It is interesting to find that FCS walls with DSC behaved in a more composite manner and was able to sustain higher ultimate shear force under push of loading test compared to FCS walls with SSC. These findings show that the FCS wall with DSC is suitable to be used as a load-bearing wall.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.