Abstract
This paper investigates the dynamic structural behavior of woven-fabric reinforced composites with high matrix–fabric volume fraction as applied in the construction of crash or security barriers typified by the Inflatable Offshore Fender Barrier Structure (IOFBS). Dynamic analysis of the IOFBS comprising of over 98% of the composite under impact loading was carried out using the finite element method employing the Coupled Eulerian–Lagrangian (CEL) formulation. The barriers were inflated to 6 kPa and 7 kPa initial pneumatic fluid pressures and subjected to crash loadings from a high velocity vessel. The enclosed fluid of the structure was modeled based on the Shomate equation and fluid behavior of water on which the structure floats was modeled using Us-Up Hugoniot equation of state. The barriers' membrane stresses distributions, deformations, internal fluid pressure surge and volume variations of the structures after impact as well as vessel's degree of instability and deceleration after impact for different initial inflation pressures were computed and studied. The developed models and numerical results obtained are useful in assessing the performance of the composite as used in the IOFBS and similar structures and in improving the design of the structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Structural Stability and Dynamics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.