Abstract

Abstract The structure, morphology and organisation of the cusps of the major lateral radula teeth of the chiton Plaxiphora albida have been examined using light, transmission and scanning electron microscopy, together with energy dispersive X‐ray analysis and Mössbauer spectroscopy. In this chiton species, both the anterior and posterior surfaces of the major lateral teeth are composed of magnetite, which is indicated to be non‐stoichiometric and associated with some maghemite, together with small amounts of phosphorus and silicon. This outer layer surrounds an inner core region of the tooth, which only reaches the surface through a small window zone on the anterior surface and which contains large amounts of iron and phosphorus presumably in the form of iron(III) phosphate. The organic matrix, on which the teeth are constructed, consists of a zone of densely packed fine fibres at the surface of the tooth, underlain by larger fibres which become sparser deeper into the cusp. The core region is characterized by the presence of densely packed short fibres. In contrast to the situation found in most other species of chiton, large fibres of the organic matrix extend throughout the region of magnetite mineralization, leading to the suggestion that the matrix exerts more control over the mineralization of magnetite than has previously been thought.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.