Abstract
Epimorphin is representative of a unique class of stromal membrane-anchored proteins that plays distinct functions depending on its membrane topology. When exposed extracellularly, this molecule acts as a morphoregulator for various tissues including hair follicle epithelia. Previous study identified its functional domain (the pep7 domain: SIEQSCDQDE) for hair follicular morphogenesis followed by the successful generation of a chemically modified active peptide. Here, we report optimization of this peptide by the introduction of sequential mutations and subsequent structural determination. We found that three residues from the C-terminus are dispensable, and alternation of the seventh amino acid to an Alanine residue enhanced activity. To favour the biologically active conformation, epsilon-Acp (NH(CH(2))(5)CO) linked to a Cysteine residue was connected at the N-terminus followed by the introduction of an intramolecular disulphide bridge, the modification process of which could be included in the peptide synthesis. The obtained modified peptide, termed 'EPM (epimorphin-derived) peptide', has a Mw of 950 Da and exerts an inductive effect on hair follicle regeneration at a concentration of approximately 0.00001% or even lower. The action of this EPM peptide was more apparent in mice treated with 1% minoxidil, suggesting its potential clinical benefit as a new type of hair-regenerating agent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.