Abstract

Effects of aspect ratio, sweep angle, and stacking sequence of laminated composites were studied to find the optimized configuration of an aeroelastically tailored composite wing idealized as a flat plate in terms of flutter speed. The aeroelastic analysis has been carried out in the frequency domain. The modal approach in conjunction with doublet-lattice method (DLM) has been chosen for structural and unsteady aerodynamic analysis, respectively. The interpolation between aerodynamic boxes and structural nodes has been done using surface splines. To study the effect of stacking sequence the classical lamination theory (CLT) has been chosen. The parametric studies showed the effective ply orientation angle to be somewhere between 15 and 30 degrees, while the plates with lower aspect ratio seem to have higher flutter speeds. Forward-swept configurations show higher flutter speed, yet imposed by divergence constraints.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call