Abstract

Lysine demethylase 5 (KDM5) subfamily proteins are important in epigenetic gene regulation. They are involved in the growth and drug resistance of cancer cells. Therefore, KDM5s are potential cancer therapeutic targets, and their inhibitors hold promise as anti-cancer drugs. Several KDM5 inhibitors, including KDM5-C49 (2a), have exhibited potent KDM5-inhibitory activities in in vitro enzyme assays. However, they do not show enough cellular activity despite being converted to their prodrugs. We hypothesized that their poor lipophilicity should prevent them from sufficiently penetrating the cell membrane, and introducing more lipophilic groups should improve cellular activities. In this study, we investigated 2a and KDM5-C70 (3a), a prodrug of 2a, and attempted to improve its cellular activity by replacing the N,N-dimethyl amino group of 3a with more lipophilic groups. N-Butyl, N-methyl amino compound 2e exhibited potent and selective KDM5-inhibitory activity equal to that of 2a. Furthermore, the cell membrane permeability of 3e, an ethyl ester prodrug of 2e, was six times higher than that of 3a in a parallel artificial membrane permeation assay. In addition, western blot analysis indicated that treating human lung cancer A549 cells with 3e increased histone methylation levels more strongly than that with 3a. Thus, we identified compound 3e as a more cell-active KDM5 inhibitor that has sufficient cell membrane permeability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call