Abstract

Rapid increases in computer processing power, memory and storage space have not eliminated computational cost and time constraints on the use of structural optimization for design. This is due to the constant increase in the required fidelity (and hence complexity) of analysis models. Anecdotal evidence seems to indicate that analysis models of acceptable accuracy have required at least six to eight hours of computer time (an overnight run) throughout the last thirty years. This poses a severe challenge for global optimization or reliability-based design. In this paper, we review how increases in computer power were utilized in structural optimization. We resolve problem complexity into components relating to complexity of analysis model, analysis procedure and optimization methodology. We explore the structural optimization problems that we can solve at present and conclude that we can solve problems with the highest possible complexity in only two of the three components of model, analysis procedure or optimization. We use examples of optimum design of composite structures to guide the discussion due to our familiarity with such problems. However, these are supplemented with other structural optimization examples to illustrate the universality of the message.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.