Abstract

Authors have investigated a series of newly developed Pr3+ doped 10ZnF2 – (5-y) Al2 O3–30LiF – 55B2O3 – yPr6011 (y = 0–0.5 mol %) glasses synthesized through melt quench technique with an objective to analyse its optical, structural, thermal, morphological, mechanical and radiation shielding capabilities. The structural evolution was systematically investigated by density, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and Energy dispersive analysis (EDAX). The overlaid absorbance (3H4→1D2) and emission (1D2→3H4) bands of 0.05 mol% of Pr3+-doped ZAlFB glass indicated the cross-relaxation channel for energy transfer between Rare-Earth (RE) ions. The ZAlFB:Pr3+ glasses excited at 445 nm exhibited intense reddish orange emission with 1D2→3H4 transition at 605 nm. This proves its suitability in reddish orange LEDs. Luminescence quenching was observed past 0.05 mol% of Pr3+ concentration in ZAlFB glass. The 1D2→3H4 transition exhibited maximum branching ratio (βr = 0.8601) in Pr0.5 glass. All the Pr3+ doped glasses revealed strong thermal stability with ΔT > 100 °C. Pr0.5 glass sample showed maximum thermal strength and mechanical hardness (Vicker's Microhardness tester). Hence, compromise over the hardness or the optical properties of the samples were studied in the ZAlFB:Pr3+ glasses. Radiation shielding properties indicated 0.5 mol% Pr3+ doped sample as a superior gamma rays shielder among the investigated ZnF2–Al2O3–LiF–B2O3–Pr6O11 glass system with favourable luminescent and radiation shielding properties, these Pr3+ doped ZAlFB glasses can be used as photonic/lasing devices in radiation zones as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.