Abstract
Low-temperature synthesis of Bi2Se3 thin film semiconductor thermoelectric materials is prepared by the plasma-enhanced chemical vapor deposition method. The Bi2Se3 film demonstrated excellent crystallinity due to the Se-rich environment. Experimental results show that the prepared Bi2Se3 film exhibited 90% higher transparency in the mid-IR region, demonstrating its potential as a functional material in the atmospheric window. Excellent mobility of 2094 cm2/V·s at room temperature is attributed to the n-type conductive properties of the film. Thermoelectrical properties indicate that with the increase in Se vapor, a slight decrease in conductivity of the film is observed at room temperature with an obvious increase in the Seebeck coefficient. In addition, Bi2Se3 thin film showed an enhanced power factor of as high as 3.41 μW/cmK2. Therefore, plasma-enhanced chemical vapor deposition (PECVD)-grown Bi2Se3 films on Al2O3 (001) substrates demonstrated promising thermoelectric properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Nanomaterials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.