Abstract

Manganese-doped and undoped ZnO nanocrystals were synthesized via wet-chemical methods. The structure, physico-chemical, electrical and optical properties of the as-prepared products were characterized by using the X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy (DRS), photoluminescence spectroscopy (PLS) and electrochemical impedance spectroscopy (EIS) techniques. The photocatalytic activity of Mn-doped ZnO nanocrystal (mixed phases) has been examined under the visible-irradiation by using photocatalytic oxidation of rhodamine B (RhB) dye as a model reaction, and compared with that of known system such as pure ZnO nanocrystal (single-phase). The results showed that Mn doped ZnO nanocrystals bleaches RhB much faster than undoped ZnO upon its exposure to the visible light. The enhancement of the photocatalytic activity was discussed as an effect due to the Mn doping in the Mn-doped ZnO semiconductors, which shifts the optical absorption edge to the visible region and alters the electron-hole pair separation conditions. These factors are responsible for the higher photocatalytic performance of Mn/ZnO composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.