Abstract

Sulfides of zinc and cadmium have been used effectively in various optolectronic devices and recently as photocatalysts in the production of molecular hydrogen in photoelectrochemical processes. We have prepared sintered CdZnS films by the screen printing method without the presence of the typical flux material. The formation of crystalline ternary compounds is inferred fromthe X-ray diffraction pattern of these film s. Their structural and optical properties are studied by reflection spectra in a wavelength range of 300–600 nm. The films have a direct band gap, which varies from3.7 eV for zinc sulfide to 2.45 eV for cadm ium sulfide. Films with a narrow range of composition were found to be stable in Na2SO3 solution under cathodic or anodic polarization in dark and illuminated conditions. This potential interval allowed to determine the flat band potentials from capacity measurements in the dark, which indicated strong contribution of double layer capacitance, surfaces states, and nonuniform doping concentration. Electrochemical impedance measurements where further performed, giving detailed information about the relevance of these factors and the optimum composition of coupled semiconductor films for photocatalytic purposes. r 2002 Elsevier Science B.V. All rights reserved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.