Abstract

Here, we present the effect of different Zn contents on the structural, morphological, and optical properties of CdXZn1-XS thin films deposited by electrodeposition method on stainless steel and indium-doped tin oxide (ITO) glass substrates. Electrosynthesized CdXZn1-XS thin films are characterized by using X-ray diffraction (XRD), UV-Vis spectrophotometer, field emission scanning electron microscope (FE-SEM), and surface wettability analysis. XRD pattern reveals that the CdXZn1-XS thin films are polycrystalline in nature with hexagonal crystal structure. FE-SEM micrograph displays that these CdXZn1-XS thin films exhibit the different sizes of sphere-like nanostructures by varying the X value. The optical absorption study indicates that drastic variation in band gap energy of CdXZn1-XS thin films. In advance photovoltaic measurements, CdXZn1-XS thin films are to be studied by forming the photoelectrochemical (PEC) cell having CdXZn1-XS/0.5 M (Na2SO3)/C configuration. The efficiency values of CdXZn1-XS are found to be 0.2, 0.35, 0.32, 0.25, and 0.23 % respectively at X content.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call