Abstract

The present study reports the effect of Fe-doping on the structural, optical, magnetic and electronic properties of polycrystalline CeO2 (for 5 and 10% doping concentration of Fe-cation) samples synthesized by low-temperature solid-state reaction method. Rietveld refinement of the X-ray diffraction patterns establishes fluorite-type face-centred cubic structure of the Fe-doped CeO2 samples and also confirms successful incorporation of Fe ions in the CeO2 lattice. The UV–Vis–NIR absorption spectra displays reduce band gap energy with rising fluency of Fe-ions, which confirm red shifts in the Fe-doped CeO2 samples. The electronic structure of the pure CeO2 and Fe-doped CeO2 polycrystalline samples have been investigated by X-ray photoemission spectroscopy (XPS). The XPS spectra of Ce 3d reveals the reduction of Ce4+ to Ce3+ states Fe-doped CeO2 samples, which are well supported by the Fe 2p and O 1s spectra. Pure polycrystalline CeO2 displays diamagnetic behaviour at room temperature. Interestingly, 5% Fe-doped CeO2 sample displays S-shape hysteresis loop and establishes room temperature ferromagnetism, whereas, 10% Fe-doped CeO2 sample shows weak ferromagnetic behaviour. A decrement is observed in the magnetization on increasing the doping concentration. The possible reason for ferromagnetism in the Fe-doped CeO2 samples may be incorporation of oxygen vacancies, which are further discussed using F-centre exchange mechanism and double exchange interaction. These experimental findings offer potential opportunities for spintronics and optoelectronics applications by integrating them into device structures and evaluating their performance as a function of their material properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.