Abstract

ZnO nanowall networks were grown on a Si (1 1 1) substrate by plasma-assisted molecular beam epitaxy (P-MBE) without using catalysts. Scanning electronic microscopy (FE-SEM) confirmed the formation of nanowalls with a thickness of about 10–20 nm. X-ray diffraction (XRD) showed that the ZnO nanowall networks were crystallized in a wurtzite structure with their height parallel to the 〈0 0 0 1〉 direction. Photoluminescence (PL) of the ZnO nanowall networks exhibited free excitons (FEs), donor-bound exciton (D 0X), donor–acceptor pair (DAP), and free exciton to acceptor (FA) emissions. The growth mechanism of the ZnO nanowall networks was discussed, and their hydrogenation was also studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.