Abstract

Rare-earth orthoniobates constitute a class of materials that has been exploited due to their interesting physical properties depending on the lanthanide element. Besides paramagnetism, ferroelasticity, and negative compressibility, these materials are known by their interesting optical properties and mixed types of conduction processes (protonic, ionic, and electronic). In this work, two types of SmNbO4 samples were studied: polycrystalline samples, prepared by a sol-gel route using the Pechini method, and single crystalline fibres grown by the Laser Floating Zone technique. These samples were structurally characterized based on powder and single-crystal X-ray diffraction studies. A metastable tetragonal phase, stabilized by grain size, was identified in the synthesized powders. After a sintering process of such powders, a single monoclinic phase was obtained. Complementarily, scanning electron microscopy and Raman spectroscopy analyses were performed to these samples. Photoluminescence and photoluminescence excitation spectroscopic studies allowed identifying more than one optically active centre of the trivalent samarium ion in the analysed material. Impedance spectroscopy measurements have shown a large variation of the ac conductivity as a function of temperature, assigned to a protonic conduction and to native ionic conduction mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call