Abstract
Nanocomposites of copper phthalocyanine (CuPc) and ZnO nanoparticles (NPs) have been grown in situ in a colloidal solution of CuPc using zinc acetate as precursor and sodium hydroxide as precipitating agent. n-Type ZnO NPs form a network with p-type CuPc by donating electrons as evidenced by various techniques. Increase in NaOH concentration produces larger ZnO nanostructures (NS) with higher aspect ratio (length/diameter) that influences the aggregation state of the CuPc. The drop-cast films of pure CuPc show stacking in both H and J aggregation modes which changes due to composite formation. A significant blue-shift in the Q-band corresponding to the J aggregated mode (∼30 nm) indicates a change in the aggregation state of CuPc molecules from slipped facial to cofacial stacking. A defect related emission from ZnO shows a blue-shift with a reduced intensity, confirming the formation of ZnO nanorods that are firmly attached to the CuPc in the composite. Further, current–voltage (I–V) characteristics of na...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.