Abstract

The structural and electro-optical influence of marcasite on the properties of solution-processed iron pyrite thin films was investigated. Marcasite has a strong tendency to form simultaneously with pyrite upon sulfurization of amorphous iron-oxide precursor films, leading to a mixed-phase structure in which pyrite grains are surrounded by nanocrystalline marcasite boundaries. The optical analysis in combination with spectroscopic ellipsometry revealed that marcasite should have a bandgap of approximately 0.85–0.88 eV with a higher absorption coefficient than pyrite, differing strongly from the prior belief that marcasite has a bandgap of less than 0.4 eV. In addition, the pyrite/marcasite film has been found to have a larger diffusion coefficient for photogenerated minority carriers than the phase-pure pyrite film from electrochemical impedance analyses, resulting in a higher photocurrent density, as determined through photoelectrochemical measurement. The facile transport of a minority carrier along the marcasite boundaries is the putative origin of the observed improvement in the photoactivity of the pyrite/marcasite mixture films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.