Abstract

Ceramics of Bi(1-x)Y(x)FeO3 solid solutions (x = 0.02, 0.07, and 0.10) have been prepared by mechanical activation followed by sintering. The effect of yttrium content on the structural, electrical, and optical properties of the materials has been studied. Thus, single-phase solid solutions with rhombohedral R3c structure have been achieved for x = 0.02 and 0.07, while for x = 0.10 the main R3c phase has been detected together with a small amount of the orthorhombic Pbnm phase. Multiferroic properties of the samples, studied by differential scanning calorimetry (DSC), showed that both T(N) and T(C) (temperatures of the antiferromagnetic-paramagnetic and ferroelectric-paraelectric transitions, respectively) decrease with increasing yttrium content. The nature of the ferroelectric-paraelectric transition has been studied by temperature-dependent X-ray diffraction (XRD), which revealed rhombohedral R3c to orthorhombic Pbnm phase transitions for x = 0.07 and 0.10. On the other hand, for x = 0.02 the high-temperature phase was indexed as Pnma. Optical properties of the samples, as studied by diffuse reflectance spectroscopy, showed low optical band gap that decreases with increasing yttrium content. Prepared ceramics were highly insulating at room temperature and electrically homogeneous, as assayed by impedance spectroscopy, and the conductivity increased with x.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.