Abstract

Epitaxial growth of monoclinic β-Ga2O3 on a-plane and c-plane sapphire substrates by metalorganic vapor-phase epitaxy (MOVPE) is reported. Crystalline phase, growth rate (∼150 nm/h), and energy gap (∼4.7 eV) were determined by x-ray diffraction and optical reflectance measurements. Film density of ∼5.6 g/cm3 measured by x-ray reflectivity suggests the presence of vacancies, and the O-rich growth regime implies the presence of Ga vacancies in the films. O/Ga ratio of 1.13, as measured by XPS for Ga2O3 grown on c-plane Al2O3, suggests that, near the surface, the film is O-deficient. Atomic force microscopy revealed smoother, smaller grain size when films were grown on c-plane Al2O3. Raman spectroscopy suggested inclusions of α-Ga2O3, likely present at the sapphire interface due to growth on nonnative substrate. Samples of β-Ga2O3 were selectively implanted with Si in the source/drain regions and subsequently annealed at 1000°C for 10 min. Normally-off transistors (VT ≅ 4.7 V) with 20-nm-thick Al2O3 gate oxide were fabricated, and a maximum drain–source current of 4.8 nA was measured.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.