Abstract

For heterojunction fabrication, zinc oxide thin films were grown on p-Si by pulsed laser deposition. X-ray diffraction patterns were used to study the grain size and morphology of the films. The optical properties of the films were studied by UV–visible and photoluminescence spectroscopy. Experimental observations confirmed that the deposited films have potential for sharp emission in the visible region. High-purity (99.999%) vacuum evaporated aluminium metal was used to make contacts to the n-ZnO and p-Si. The current–voltage characteristics of the Al/n-ZnO/p-Si(100)/Al heterostructure measured over the temperature range 60–300 K were studied on the basis of the thermionic emission diffusion mechanism. The equivalent Schottky barrier height and the diode ideality factor were determined by fitting measured current–voltage data to the thermionic emission diffusion equation. It was observed that the barrier height decreased and the ideality factor increased with decreasing temperature, and that the activation energy plot was non-linear at low temperature. These characteristics are attributed to the Gaussian distribution of barrier heights. The capacitance–voltage characteristics of the Al/n-ZnO/p-Si(100)/Al heterostructure diode were studied over a wide temperature range. The impurity concentration in deposited n-type ZnO films was estimated from measured capacitance–voltage data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call