Abstract
The hydrothermal reactions of uranyl nitrate and metallic copper with aromatic polycarboxylic acids gave rise to the formation of five heterometallic UO(2)(2+)-Cu(2+) coordination polymers: (UO(2))Cu(H(2)O)(2)(1,2-bdc)(2) (1; 1,2-bdc = phthalate), (UO(2))Cu(H(2)O)(2)(btec)⋅4 H(2)O (2) and (UO(2))Cu(btec) (2'; btec = pyromellitate), (UO(2))(2)Cu(H(2)O)(4)(mel) (3; mel = mellitate), and (UO(2))(2)O(OH)(2)Cu(H(2)O)(2)(1,3-bdc)⋅H(2)O (4; 1,3-bdc = isophthlalate). Single-crystal X-ray diffraction (XRD) analysis of compound 1 revealed 2D layers of chains of UO(8) and CuO(4)(H(2)O)(2) units that were connected through the phthalate ligands. In compound 2, these sheets were connected to each other through the two additional carboxylate arms of the pyromellitate, thus resulting in a 3D open-framework with 1D channels that trapped water molecules. Upon heating, free and bonded water species (from Cu-OH(2)) were evacuated from the structure. This thermal transition was followed by in situ XRD and IR spectroscopy. Heating induced a solid-state topotactic transformation with the formation of a new set of Cu-O interactions in the crystalline anhydrous structure (2'), in order to keep the square-planar environment around the copper centers. The structure of compound 3 was built up from trinuclear motifs, in which one copper center, CuO(4)(OH(2))(2), was linked to two uranium units, UO(5)(H(2)O)(2). The assembly of this trimer, "U(2)Cu", with the mellitate generated a 3D network. Complex 4 contained a tetranuclear uranyl core of UO(5)(OH)(2) and UO(6)(OH) units that were linked to two copper centers, CuO(OH)(2)(H(2)O)(2), which were then connected to each other through isophthalate ligands and U=O-Cu interactions to create a 3D structure. The common structural feature of these different compounds is a bridging oxo group of U=O-Cu type, which is reflected by apical Cu-O distances in the range 2.350(3)-2.745(5) Å. In the case of a shorter Cu-O distance, a slight lengthening of the uranyl bond (U=O) is observed (e.g., 1.805(3) Å in complex 4).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.