Abstract

Human CYP27A1 is a mitochondrial cytochrome P450, which is principally found in the liver and plays important roles in the biological activation of vitamin D3 and in the biosynthesis of bile acids. We have applied a systematic analysis of hydrogen bonding patterns in 11 prokaryotic and mammalian CYP crystal structures to construct a homology-based model of CYP27A1. Docking of vitamin D3 structures into the active site of this model identified potential substrate contact residues in the F-helix, the β-3 sheet, and the β-5 sheet. Site-directed mutagenesis and expression in COS-1 cells confirmed that these positions affect enzymatic activity, in some cases shifting metabolism of 1α-hydroxyvitamin D3 to favor 25- or 27-hydroxylation. The results suggest that conserved hydrophobic residues in the β-5 hairpin help define the shape of the substrate binding cavity and that this structure interacts with Phe-248 in the F-helix. Mutations directed toward the β-3a strand suggested a possible heme-binding interaction centered on Asn-403 and a structural role for substrate contact residues Thr-402 and Ser-404.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.